Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
Tutorial de BASH scripting para alunos de iniciação científica e pós-graduação
Published:
Instalação do Miniconda e outros programas importantes para simulações moleculares
Published:
Tutorial de dinâmica molecular para avaliar a estabilidade da pose de um ligante dentro do sítio ativo de uma proteína.
Published:
Tutorial de preparação para docking de ligante em proteína
Published in Journal of Chemical & Engineering Data, 2017
Minireview about solvation free energy calculations and update of FreeSolv, a experimental and computational free energy of solvation database.
Recommended citation: G. Duarte Ramos Matos, et al. (2017). "Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database." J. Chem. Eng. Data. 62 (5) 1559-1569. http://gduarter.github.io/files/2017-FreeSolv.pdf
Published in MRS Communications, 2018
Study aimed at understanding the dynamics of fatty acids found in vegetable oils in montmorillonite as a means of understanding polymer-clay nanocomposites.
Recommended citation: F. A. R. Silva, M. J. A. Sales, M. Ghoul, L. Chebil, G. Duarte Ramos Matos, E. R. Maia (2018). "Molecular dynamics simulations of montmorillonite reinforcing amylose plasticized by Brazilian Cerrado oils: polymer-clay nanocomposite." MRS Communications. 8, 266-274. http://gduarter.github.io/files/2018-MD_montmorillonite.pdf
Published in Journal of Chemical Theory and Computation, 2018
Description of relative alchemical free energy calculations and their reproducibility accross different software.
Recommended citation: Hannes Loeffler et al. (2018). "Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages." J. Chem. Theory Comput.. 14(11) 5567-5582. http://gduarter.github.io/files/2018-Reproducibility.pdf
Published in F1000Research, 2019
The solubility of molecular crystals is a challenging physical property to predict. In this paper we discuss the efforts of estimating the solubility of molecular crystals using free energy calculations.
Recommended citation: G. Duarte Ramos Matos, D. L. Mobley (2019). "Challenges in the use of atomistic simulations to predict solubilities of drug-like molecules." F1000Research. 7:686. http://gduarter.github.io/files/2019-Solubility.pdf
Published in Journal of Chemical Theory and Computation, 2019
Infinite dilution activity coefficients (IDACs) express the degree of non-ideality a solution has in infinitely dilute conditions and are important parameters for chemical plant design. This paper uses solvation free energy calculations to estimate IDACs and show that they are good alternatives to solvation free energies as validation tools in Computational Chemistry.
Recommended citation: G. Duarte Ramos Matos et al. (2019). "Infinite Dilution Activity Coefficients as Constraints for Force Field Parametrization and Method Development." J. Chem. Theory Comput.. 15 (5), 3066-3074. http://gduarter.github.io/files/2019-IDAC.pdf
Published in Molecules, 2023
we describe a fundamental model proposal for the future development of lipid–peptoid-based customized drug delivery systems. This proposal was built based on the synthesis of a wide variety of peptoids with structural diversity via the Ugi reaction, followed by nanoformulations through the emulsification–evaporation process and molecular dynamics simulations.
Recommended citation: T. P. F. Rosalba, G. Duarte Ramos Matos, C. E. M. Salvador, C. K. Z. Andrade (2023). "Rational Design and Multicomponent Synthesis of Lipid–Peptoid Nanocomposites towards a Customized Drug Delivery System Assembly." Molecules. 28, 5725. http://gduarter.github.io/files/2023-Nano.pdf
Published in Journal of Chemical Information and Modeling, 2023
The primary objective of the present study is three-fold: (1) implement and validate a robust interface enabling DOCK6 to communicate with the open-source cheminformatics package RDKit,22 (2) confirm that the use of DOCK_D3N protocols leads to ligand ensembles that conform to the desired target values for the descriptors under different conditions and environments, and (3) examine ligand growth behavior using very narrow ranges for descriptors derived from clinically relevant compounds.
Recommended citation: G. Duarte Ramos Matos, S. Pak, R. C. Rizzo (2023). "Descriptor-Driven de Novo Design Algorithms for DOCK6 Using RDKit." J. Chem. Inf. Model.. 63, 5803-5822. http://gduarter.github.io/files/2023-D3N.pdf
Published in Organic & Biomolecular Chemistry, 2024
In this study, we present our findings concerning solvent effects on Biginelli-like MCRs, the mechanistic pathways of these transformations, and associated side reactions. We also advocate for a comprehensive correction of the vast existing literature on this topic.
Recommended citation: P. S. Beck, A. G. Leitão, Y. B. Santana, J. R. Correa, C. V. S. Rodrigues, D. F. S. Machado, G. Duarte Ramos Matos, L. M. Ramos, C. C. Gatto, S. C. C. Oliveira, C. K. Z. Andrade, B. A. D. Neto (2024). "Revisiting Biginelli-like reactions: solvent effects, mechanisms, biological applications and correction of several literature reports." Org. Biomol. Chem.. 22, 3630. http://gduarter.github.io/files/2024-Biginelli.pdf
Undergraduate course, University of California Irvine, Department of Chemistry, 2013
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in general Chemistry with applications to life sciences, physical sciences, and engineering. Atomic structure; general properties of the elements; covalent, ionic, and metallic bonding; mass relationships.
Undergraduate course, University of California Irvine, Department of Chemistry, 2014
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in general chemistry with applications to life sciences, physical sciences, and engineering. Properties of gases, liquids, solids; intermolecular forces; changes of state; properties of solutions; stoichiometry; thermochemistry; and thermodynamics.
Undergraduate course, University of California Irvine, Department of Pharmaceutical Sciences, 2015
Introductory survey covering the molecular mechanisms of drugs that target the nervous system, such as anxiolytics, antidepressants, antipsychotics, hypnotics, muscle relaxants, and recreational drugs; drugs related to the immune system, including antibiotics, antihistamines, and immunosuppressants; drugs used to treat cancer.
Undergraduate course, University of California Irvine, Department of Chemistry, 2016
An introduction to the use of computational chemistry to investigate reaction mechanisms, to calculate structures, and to predict properties of molecules. Students have the opportunity to perform calculations employing computational methods which are widely used in various fields of chemistry.
Undergraduate course, University of California Irvine, Department of Chemistry, 2018
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in general Chemistry with applications to life sciences, physical sciences, and engineering. Atomic structure; general properties of the elements; covalent, ionic, and metallic bonding; mass relationships; properties of gases, liquids, solids; intermolecular forces; changes of state; properties of solutions; stoichiometry; thermochemistry; and thermodynamics.
Graduate course, Stony Brook University, Department of Applied Mathematics and Statistics, 2020
This computer-based lab course is designed for students who wish to gain hands an experience modeling biological molecules at the atomic level. In conjunction with individual interests, Molecular Mechanics, Molecular dynamics, Monte Carlo, Docking (virtual screening), or Quantum Mechanics software packages can be used to study relevant biological systems (s). Projects will include setup, execution, and analysis. Course participants will give literature presentations relevant to the simulations being performed and a final project report will be required. Familiarity with Unix (Linux) is desirable but not mandatory.
Graduate course, Stony Brook University, Department of Applied Mathematics and Statistics, 2020
This course provides an introduction to Computational Structural Biology with application to Drug Design. Methods and applications that use computation to model biological systems involved in human disease will be emphasized. The course aims to foster collaborative learning and will consist of presentations by the instructor, guest lecturers, and by course participants with the goal of summarizing key, methods, topics, and papers relevant to Computational Structural Biology. Grades are based on the quality of the presentations, participation in class discussion, attendance, quizzes, and a final exam.
Undergraduate course, Universidade de Brasília, Instituto de Química, 2022
Upper-division Physical-Chemistry course intending to deepen the understanding of chemical phenomena by making connections between classical thermodynamics and the microscopic world. Focus on the study of equilibrium states and their stability.
Undergraduate course, Universidade de Brasília, Instituto de Química, 2023
Lower-division Physical-Chemistry course intending to introduce the students to important concepts of Quantum Mechanics that are frequently used in Chemistry.
Undergraduate course, Universidade de Brasília, Instituto de Química, 2024
Intro level General Chemistry course for non-Chem Majors.