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ABSTRACT: Structure-based methods that employ principles of de novo design can be used to construct small organic molecules
from scratch using pre-existing fragment libraries to sample chemical space and are an important class of computational algorithms
for drug-lead discovery. Here, we present a powerful new design method for DOCK6 that employs a Descriptor-Driven De Novo
strategy (termed D3N) in which user-defined cheminformatics descriptors (and their target ranges) are calculated at each layer of
growth using the open-source toolkit RDKit. The objective is to tailor ligand growth toward desirable regions of chemical space. The
approach was extensively validated through: (1) comparison of cheminformatics descriptors computed using the new DOCK6/
RDKit interface versus the standard Python/RDKit installation, (2) examination of descriptor distributions generated using D3N
growth under different conditions (target ranges and environments), and (3) construction of ligands with very tight (pinpoint)
descriptor ranges using clinically relevant compounds as a reference. Our testing confirms that the new DOCK6/RDKit integration
is robust, showcases how the new D3N routines can be used to direct sampling around user-defined chemical spaces, and highlights
the utility of on-the-fly descriptor calculations for ligand design to important drug targets.

■ INTRODUCTION
Virtual screening methods are a commonly used and well-
validated class of computational tools to help screen libraries of
pre-existing purchasable (or likely synthesizable) small organic
molecules to a drug target (usually a protein) prior to
experimental testing.1 Virtual screening protocols typically
involve generation and evaluation of hundreds to thousands of
conformations (poses) for every ligand that is docked to the
target and identifies those that are most compatible according
to physical interactions within the binding site and/or other
user-specified criteria. Despite its effectiveness, exhaustive
docking of large libraries such as ZINC,2−4 which continues to
grow at an astounding rate, can be prohibitive for many users
who lack the infrastructures to screen libraries on the order of
107 to 109 molecules. Further, given that the chemical space
covered by current vendor catalogues is only a fraction of the
available chemical space, standard virtual screening approaches
may not always identify molecules optimal for the specific
protein binding site being targeted.

Alternative methods, such as de novo design (hereafter
abbreviated as DN), provide complementary ways to navigate
and search chemical space using algorithms that enable
molecules to be constructed from scratch, directly in the
context of the binding site,5−11 thereby eliminating the need to
start from libraries of pre-existing compounds. In theory, DN
approaches should allow users to identify target-compatible
compounds more quickly and with less computational effort
than with virtual screens. In practice, molecules constructed
using DN may have shortcomings that need to be addressed.
For example, although DN molecules may have been
constructed to interact favorably with the drug target, they
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may also be difficult to synthesize chemically12 or have
unfavorable cheminformatic properties typically required of
drug-like candidates. Recently, several studies have employed
artificial intelligence and/or machine learning in an attempt
address some of these known shortcomings.13−18 In our own
work, we employed data mining to develop an “allowable
torsion type” table to enforce chemically reasonable growth
during DN based on deconstruction of 13M drug-like
molecules, so that only previously observed torsion types
would be allowed. A conceptually similar strategy, presented in
the paper outlining the program OpenGrowth,19 employed
functional group pairwise probabilities (termed FOG proba-
bilities) to help promote physically reasonable molecules.
In the present work, we describe a significant new addition

to the DOCK6 de novo design engine (DOCK_DN) that
builds upon prior work described in Allen et al.20 As shown in
Figure 1a, ligand assembly in DOCK_DN begins with the
orientation of a molecular fragment (termed anchor) selected
from a user-definable fragment library (see Computational
Methods and Details). Candidate fragments are then attached
to each anchor, in a layer-by-layer fashion, similar to the
standard DOCK6 anchor-and-grow algorithm,21 until a
complete molecule is obtained. We hypothesized we could
improve upon the current DOCK algorithms by checking
whether partially grown molecules have reasonable drug-like
properties at each layer of DN growth (Figure 1, horizontal
arrows) using cheminformatics descriptors such as lip-
ophilicity, solubility, topological polar surface area, or ease of
synthesis, among others. The objective is to construct more
pharmacologically favored ensembles, directly in the protein
binding site, without the need for post-processing or filtering.
We call our methodology “Descriptor-Driven De Novo”
(abbreviated D3N) because the decision to promote partially
grown molecules to the next layer of growth is contingent on
user-defined ranges for the descriptor being employed. The
primary objective of the present study is three-fold: (1)
implement and validate a robust interface enabling DOCK6 to
communicate with the open-source cheminformatics package
RDKit,22 (2) confirm that the use of DOCK_D3N protocols
leads to ligand ensembles that conform to the desired target
values for the descriptors under different conditions and
environments, and (3) examine ligand growth behavior using

very narrow ranges for descriptors derived from clinically
relevant compounds.

■ COMPUTATIONAL METHODS AND DETAILS
Software Interface and Infrastructure. The

DOCK623−25 program is written primarily in C++ and the
most recent version (DOCK6.10) has three main engines for
ligand sampling and chemical searching: (1) virtual screening
using an anchor-and-grow algorithm,21 (2) from-scratch
construction using a DN design algorithm (DOCK_DN),20

and (3) molecular evolution using a genetic algorithm
(DOCK_GA).26 The primary objective of the present work
was development and testing of a DOCK6/RDKit interface to
allow cheminformatics descriptors to be used in conjunction
with DOCK_DN.20 This required adapting the DOCK6 object
DOCKMol to communicate with RDKit objects ROMol and
RWMol. The names of relevant functions and input parameters
in this paper are highlighted in italics. Briefly, the new
DOCK6/RDKit interface, named DOCKMol_to_ROMol,
assigns DOCKMol object atom types, bond orders, formal
charges, and other molecular properties to ROMol that is
ultimately used to calculate the RDKit descriptors. DOCK-
Mol_to_ROMol is only used in circumstances when descriptors
are required; otherwise, the standard DOCKMol object is
employed. The DOCKMol_to_ROMol interface was largely
inspired by the Mol2FileParser routine provided with the
standard RDKit distribution.
The RDKit interface for DOCK in this work was developed

on top of DOCK6.9 (http://dock.compbio.ucsf.edu/) using
the 2019.09.01 release of RDKit (http://rdkit.org/) and Boost
1.71.0 (http://boost.org/). The RDKit compilation process
also requires Boost 1.71.0 (http://boost.org/) in addition to
Eigen 3.3.9 (http://eigen.tuxfamily.org/) and Anaconda3
(http://anaconda.com/). All code was compiled with GNU
compilers (gcc/g++ 7). DOCK6 users have a choice if they
want to compile DOCK6 with RDKit. If so, they will need to
add the path for RDKit and Boost to their bashrc (or
equivalent) file. In principle, the interface will allow any of the
>50 RDKit descriptors (2D, 3D, fingerprints, and combina-
tions thereof) to be used by DOCK6. This current work has
focused on interfacing a relatively small subset of key
descriptors including QED (quantitative estimate of drug
likeness),27 SynthA (synthetic accessibility),28 TPSA (topo-

Figure 1. Schematic outline showing the D3N algorithm. (a) An anchor (initial layer, orange square) is selected from the fragment library (colored
fragments) and oriented/scored in the protein binding site (green). (b) As candidate fragments are added to the anchor, the partially grown
molecules must conform to the user-defined descriptor ranges (intermediate layer, orange + colored fragment) or the fragment is rejected. The
process continues until the desired number of layers is reached (the present work employed up to 9 layers of growth). (c) The final ensemble will
be enriched with fully grown molecules (multi-colored and connected fragments) that conform to the user-defined descriptor ranges.
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logical polar surface area),29 log P (octanol/water partition
coefficient),30 log S (aqueous solubility),31 #Aromatic
(number of aromatic rings), #Stereo (number of stereo-
centers), #Spiro (number of spirocenters), #PAINS (number
and identity of pan-assay interference compounds),32−34

#Aliphatic (number of aliphatic rings), #Saturated (number
of saturated rings), MACCS fingerprint keys,35 and SMILES
strings. While most of these 13 descriptors could be interfaced
immediately, QED, SynthA, and log S required conversion of
Python scripts in the RDKit Github repository to C++. A new
DOCK6 class, termed RDTyper, was written to retrieve RDKit
descriptors and perform calculations using “combinations of
descriptors” as needed. RDtyper can be called from the
DOCK6 database filter/utilities class23 or the DOCK_DN
engine.20 Readers should note that current D3N protocols
allow 7 of the aforementioned 13 descriptors to be used during
on-the-fly growth. Future work will evaluate the use of other
descriptors for D3N as well as develop an RDKit interface for
the DOCK6 genetic algorithm (DOCK_GA) recently reported
by Prentis et al.26

D3N Fragment Library, Algorithm, and Implementa-
tion. As illustrated in Figure 1, docked (oriented) ligand
fragments (termed anchors) are used to seed DN growth
followed by the attachment of compatible fragments (i.e.,
allowable newly formed torsion types), one-by-one, over the
course of a user-defined number of steps (typically 8−9).
Figure 2a visually illustrates how fragment libraries are
constructed using DOCK6 starting from a collection of input
molecules, in this example epinephrine and DANA. Figure 2b
shows 3D representations for 19 fragments, ordered by
frequency of occurrence, derived from deconstructing
13,195,579 drug-like molecules downloaded from ZINC
(termed the ZINC13M data set).2−4 As in prior work,20,26

for tractability, we choose to retain molecular fragments only if
they appeared 13,000 times or more (roughly ∼0.1% of the
total), resulting in a final curated set of 382 fragments and
10,844 allowable torsions (bond types). For consistency with
prior work, all allowable torsion types were retained. The
library is arranged into sidechains (1 attachment point, N =
217), linkers (2 attachment points, N = 146), and scaffolds (3+
attachment points, N = 19). It is important to note that the
DOCK6 infrastructure allows users to easily customize their
own fragment libraries and retain as many entries (fragments
or torsion types) as desired.
At each stage of DN growth, multiple 3D geometries are

generated (sampling), the fitness of the partially grown
molecule is evaluated (scoring), and a small number of
molecular properties are computed including molecular weight,
number of rotatable bonds, formal charge, number of potential
H-bond acceptors, and number of potential H-bond donors.
The new D3N algorithm adds to these features by allowing up
to 7 additional descriptors to influence ligand growth including
QED (dn_drive_qed), SynthA (dn_drive_sa), TPSA (dn_dri-
ve_tpsa), log P (dn_drive_clogp), log S (dn_drive_esol),
#Stereo (dn_drive_stereocenters), and #PAINS (dn_drive_-
pains). Each descriptor can be turned on or off with the user
having full control over the target ranges (discussed below). As
each partially grown molecule is passed to the next layer of
growth (Figure 1), if the values for computed descriptors fall
within the target ranges defined in the input file, the molecule
is automatically stored in a separate vector to be sent to the
next layer. If any descriptor falls outside of the target range, the
acceptance of the molecule is determined by a Metropolis-like
procedure (termed soft-cutoff scheme) as shown in Figure 3.
Here, probability of acceptance p1 is calculated assuming a
normal distribution of descriptor values where x is the

Figure 2. Schematic illustrating (a) how DOCK6 fragment libraries are derived by deconstructing molecules along rotatable bonds and the (b) top
19 fragments ordered by frequency (out of 382 retained) for a library derived from 13M drug-like molecules downloaded from ZINC.2−4 Based on
the number of dummy atoms (magenta attachment points), the fragments are classified into sidechains (1 attachment point, N = 217), linkers (2
attachment points, N = 146), or scaffolds (3+ attachment points, N = 19).
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descriptor value, x′ is the nearest interval limit, σx is the
descriptor standard deviation (see the next section), and p2 is a
random number between 0 and 1. If p1 > p2, the molecule is
accepted and sent to the next layer. If p1 ≤ p2 the molecule is
rejected. Readers should note that #Stereo and #PAINS have a
slightly different criterion that takes into consideration their
discrete (integer) values according to eq 1 where N is an
integer that should always be greater than 1 during application
of the soft-cutoff scheme.

p e N
1

(random(0,1)/( 1))2
= (1)

Simulation Types (Simple-Build, Protein-Standard,
Protein-Pinpoint). The primary simulation types employed
in this work, shown in Table 1, can be organized into three

broad categories: (1) growth in the absence of a protein site
termed “simple-build”, (2) growth in protein sites using
standard parameter ranges termed “protein-standard”, and (3)
growth in protein sites with very specific parameters termed
“protein-pinpoint”. While the different simulation types
employed different numbers of anchors as seeds for growth,
in subsequent layers, all 382 fragments were employed.
Readers should note that as used here, anchors are a subset

of the total number of fragments. Table 1 also lists the pdb
codes for each protein or protein family and the main scoring
function(s) employed in each case.
Growth under the simple-build infrastructure is guided by a

ligand-only energy function comprising solely an intra-
molecular van der Waals (VDW) repulsive term (Lennard
Jones coefficient of 12). Given that simple-build results are not
influenced by binding site characteristics, this helps to isolate
the behavior of the algorithm. Simple-build is also significantly
faster than protein-based simulations; thus, we employed
nearly all of the fragments in the library as anchors to seed
growth (N = 380), which increases chemical searching.
Growth under the protein-standard infrastructure (N = 57,

eight protein families) is guided by the standard dock single-
grid energy (SGE) function comprising non-bonded VDW
plus electrostatic (ES) interactions. However, given the
increased computational expense and the large number of
protein systems involved, only the first 10 most commonly
occurring fragments in Figure 2 were used as anchors (#1−10)
augmented by 5 less frequently occurring fragments chosen at
random to explore different chemistries: triazole (#100),
adamantyl (#250), thiazole (#300), sub-chlorobenzene
(#350), and sub-oxazole (#380).
Growth under the protein-pinpoint infrastructure (N = 6

systems) used an enhanced scoring function comprising multi-
grid energy (MGE) plus footprint similarity (FPS) terms (FPS
weights = 1). The addition of FPS36,37 scoring helps bias
growth toward the interaction signatures made by a reference.
In this work, the ligand bound to each of the 6 crystal structure
targets served as the reference and are referred to in the
remainder of the paper as the “reference ligand”. To facilitate
energetic comparisons between the reference ligands and
outcomes from de novo design, the references were assigned
hydrogen atoms, Gasteiger−Marsili charges,38 and minimized
in the same multi-grids employed during D3N growth. Here,
given the smaller number of pinpoint systems examined, the
larger group of anchors (N = 380) was used.
System Setup Details for Protein-Based Simulations.

Protein simulations in this work employed setups taken from
our SB2012 data set, the construction of which has been
previously described.20,23,39 Briefly, for each system, coordinate
files were downloaded from the PDB40 and saved as separate
protein and ligand entries. Ligands were protonated, visually
examined for correctness, and assigned partial atomic charges
(AM1-BCC method)41,42 and force−field parameters (GAFF
method)43 using the program antechamber44 distributed with
the Amber45 suite of programs (AmberTools). Amber-ready
protein−ligand complexes were then assembled with the
program tLEaP (AmberTools), which protonates the protein
and assigns ff99SB46 parameters. After preparation, each
complex was energy-minimized using Amber1647 (using
heavy atom restraints) to relax the system with the force
field and alleviate any potential clashes that might have arisen
from the addition of hydrogen atoms. The minimized protein
was extracted, saved in MOL2 format, and used as input for
the program DMS48 (1.4 Å radius probe) to generate a
molecular surface. In turn, the DMS surface is used as input to
the program sphgen49 to generate a set of docking spheres
used to orient anchors (or ligands) in the binding site. Finally,
the DOCK accessory program GRID50 was used to create a set
of docking grids, which speeds up the calculations, by pre-
computing VDW (6−9 attractive−repulsive Lennard-Jones
exponents) and ES (Coulombic interactions scaled by a

Figure 3. Schematic showing D3N procedure for accepting new
fragments. For every molecule at each layer of growth, multiple
descriptors are calculated. If all descriptors fall within the user-defined
ranges, the partially grown molecule is accepted and sent to the next
layer of growth. If one or more descriptors are outside the target
range, a soft-cutoff (Metropolis-like) scheme is applied in which there
is a finite probability that the molecule could be sent to the next layer.

Table 1. Primary Simulation Types Employed for D3N
Growth

simulation type
N anchors, N
fragments

main scoring function
employed

(1) simple-build (absence of
protein)

380, 382 ligand only VDW
repulsive term

(2) protein-standard (57
systems)a

15, 382 SGE

(3) protein-pinpoint (6
systems)b

380, 382 MGE +FPS

aAcetylcholinesterase (1EVE, 1H22, 1J07, 1Q84, 1ZGC), cyclo-
oxygenase (1EQG, 1EQH, 1HT5, 1HT8, 1Q4G, 4COX), EGFR
(2ITP, 2ITT, 2ITY, 2RGP, 3BEL), HIV protease (1AJV, 1DMP,
1HVR, 1MER, 1MES, 1MET, 1QBS, 2F80, 2F81, 2IDW, 2IEN,
2IEO), HIV reverse transcriptase (1C1B, 1C1C, 1VRU, 2BE2, 2RKI,
2ZD1, 3BGR, 3DLE, 3DLG, 3DOL), IGF1R (2ZM3, 3NW5, 3NW6,
3NW7), neuraminidase (1BJI, 1F8B, 1F8C, 1F8D, 1F8E, 1MWE,
1NNB, 1NNC, 1XOE, 1XOG), streptavidin (1DF8, 1SRG, 1SRI,
1SRJ, 2IZL). bMAP kinase (1A9U), FGR1 kinase domain (1AGW),
COX-1 (1EQH), HMG-CoA reductase (1HW9), HIV reverse
transcriptase (1IKW), neuraminidase (3CL0).
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distance-dependent dielectric = 4r) contributions from the
protein.
DOCK_DN Simulation Parameters. The key

DOCK_DN parameters employed in this work are listed in
Table 2. For additional information, readers should consult

Allen et al.20 and the DOCK6 manual (http://dock.compbio.
ucsf.edu/). Briefly, all simulations employed the random
sampling method (dn_sampling_method) for which up to 20
or 50 (protein-pinpoint simulations only, see discussion above)
fragment selections (picks) were allowed (dn_num_random_-
picks). In addition to the D3N-specific parameters discussed
above, additional constraints (see Table 2 for values) evaluated
during growth included filters for molecular weight
(dn_mol_wt_cutof f_type, dn_upper_constraint_mol_wt, dn_lo-
wer_constraint_mol_wt, dn_mol_wt_std_dev), number of
rotatable bonds (dn_constraint_rot_bon), and formal charge
(dn_constraint_formal_charge). The maximum number of
growth layers per molecule (dn_max_grow_layers) was set to
9, the maximum number of molecules that can be derived from
any single partially grown molecule or “root” (dn_max_root_-
size) was set to 25 or 50 (protein-pinpoint only), and the
maximum ensemble size of partially grown molecules that can
be passed to the next layer (dn_max_layer_size) was set to 25
or 50 (protein-pinpoint only). The maximum number of
scaffold fragments that could be added to any molecule at each
layer of growth (dn_max_scaf folds_per_layer) was capped at 1
and the maximum number unsatisfied attachment points per
molecule (dn_max_current_aps) at any point was set to 5,
which helps control branching.20

As noted previously,20,26 chemical searching in DOCK_DN
can lead to molecules with identical topology but different
conformations and/or binding poses. In the present work, to
simplify interpretation of D3N outcomes, “duplicate” mole-
cules were removed by (1) grouping all molecules for a given
experiment into a single MOL2 file, (2) clustering the
molecules based on topological identity using SMILES strings,

and (3) retaining only those molecules with the best score
depending on the experiment (internal energy, SGE, or MGE).
Default Descriptor Ranges Derived from Approved

Small-Molecule Drugs and Active Pharmaceutical
Agents. For testing D3N, we wanted a reasonable set of
input parameter ranges (DOCK6 defaults) for the 7 different
descriptors. Table 3 shows values derived from a curated set of

approved small-molecule drugs and active pharmaceutical
agents contained in the DrugCentral database,51,52 termed here
the “D3N-drugc” parameter set (see the Supporting
Information for curation details), based on values computed
using DOCK6/RDKit (Table S1). The parameter ranges for
TPSA, log P, and log S reflect the mean ± standard deviation
from corresponding entries in Table S1 (Supporting
Information). For QED, SynthA, #Stereo, and #PAINS, one-
sided boundary ranges were employed given that the “best”
scores have direction. For example, QED scores range from 0
to 1, with 1 being best.27 Conversely, SynthA scores range
from 1 to 10, with 1 being best. For these two descriptors,
D3N-drugc default values were set to their respective DrugC
means of 0.61 (QED, lower bound only) and 3.34 (SynthA,
upper bound only).28 For #Stereo and #PAINS, given that
scores near 1 or 0 would likely be desirable, upper bound
values for pruning were set to 2 and 1, respectively. Table 3
also contains values for a protocol termed “D3N-loose”, meant
to mimic standard DN behavior (little to no RDKit-based
pruning), which provides a control.
Descriptor Correlations. Although the DOCK6/RDKit

interface allows multiple descriptors to be employed
simultaneously during ligand growth, it is important to assess
the extent to which different descriptors may be correlated.
D3N simulations employing non-orthogonal descriptor
combinations may suffer from sampling issues and inefficient
navigation of chemical space. Figure 4 shows a Pearson matrix
correlation heatmap from pairwise combinations of the five
“non-integer” D3N descriptors using molecules from the
ZINC13M data set. As shown by the heatmap, the descriptors
show relatively weak correlation with the exception of log P
and log S, which yielded an R value of −0.96 (strong inverse
correlation). To avoid multicollinearity, we opted not to drive
log P and log S simultaneously.

■ RESULTS AND DISCUSSION
Code and Infrastructure Validation. To establish that

the DOCK6/RDKit integration was implemented correctly, we

Table 2. Key DOCK_DN Parameter Values Used in This
Work

parameter description value

dn_sampling_method method employed for picking
fragments (exhaustive, random,
graph)

random

dn_num_random_picks N fragments randomly selected 20, 50
dn_mol_wt_cutof f_type molecular weight filtering method

(hard, soft)
soft

dn_upper_constraint_mol_wt the upper limit for MW filter 550
dn_lower_constraint_mol_wt the lower limit for MW filter 0
dn_mol_wt_std_dev the standard deviation for MW filter 35
dn_constraint_rot_bon the max rotatable bonds allowed 15
dn_constraint_formal_charge largest absolute charge of a molecule 2
dn_max_grow_layers max number of layers for growth

starting from an anchor
9

dn_max_root_size max number of new molecules
allowed from any given growing
molecule

25, 50

dn_max_layer_size max number of partially grown
molecules that advanced to the
next layer

25, 50

dn_max_current_aps max number of unsatisfied
attachment points at any given
time

5

dn_max_scaf folds_per_layer max number of scaffolds added per
layer per molecule

1

Table 3. Input Parameter Ranges for D3N-Drugc and D3N-
Loose Protocols

descriptor
name

D3N-drugc
rangea

D3N-drugc std
dev

D3N-loose
rangeb

QED 0.61 lower bound 0.19 0.0 lower bound
SynthA 3.34 upper bound 0.90 10 upper bound
TPSAc 28.53 to 113.20 42.33 0 to 9999
log P −0.30 to 3.75 2.02 −20 to 20
log S −5.23 to −1.35 1.94 N/A
#Stereo 2 upper bound N/A 100 upper bound
#PAINS 1 upper bound N/A N/A

aD3N-drugc parameter ranges mimic DrugC data set distributions
(±one std dev from mean). bD3N-loose parameter ranges mimic
standard DOCK_DN behavior (little to no pruning). cTPSA values in
angstroms squared.
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computed 9 descriptors for the 13M molecules in the
ZINC13M data set and compared the numerical results with
those obtained using the standard Python3 RDKit distribution
(Python/RDKit). To establish a computationally consistent
environment, the SMILES strings generated internally using
DOCK6/RDKit were also used as the input for Python/
RDKit. As shown in Figure 5, the numerical results from both
platforms are identical, for all practical purposes, which
confirms the integrity of the implementation. Some minor
exceptions are observed in plots of QED, SynthA, and log S,
which are numerically insignificant. Readers should note that
the heatmap colors in Figure 5 are a complementary way to
visualize the descriptor populations shown in Figure S1, which
compare the underlying descriptor distributions for the DrugC
and ZINC13M data sets.
It should be emphasized that the numerically equivalent

results in Figure 5 comparing DOCK6/RDKit to Python/
RDKit are a direct result of using the identical SMILES strings
as inputs for both sets of calculations. Importantly, they
establish that the underlying calculation methods are the same.

Figure 4. Pearsons correlation matrix between descriptors computed
for molecules in the ZINC13M data set color-coded as a heatmap.

Figure 5. Scatter plots for descriptors calculated using DOCK6/RDKit (DOCK6_RDK) vs Python/RDKit (Python_RDK) using 13M molecules
downloaded from ZINC (ZINC13M data set). Both sets of calculations employed the identical SMILES strings generated using DOCK6/RDKit
from MOL2 files. Heatmap colors correspond to the number of molecules (population) across each descriptor range. TPSA values in angstroms
squared.
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However, DOCK6/RDKit requires MOL2 files as input, for
which SMILES strings are generated internally prior to the
calculations, and Python/RDKit users typically employ
SMILES as input. To help gauge the accuracy of the MOL2
to SMILES conversion routine, we performed additional
testing using a large curated set of compounds derived from
ZINC15 (N = 11,292,054) for which both a MOL2 file and a
SMILES string were available for each ZINCID. Compounds
were downloaded via the ZINC15 tranche browser subject to
the following criteria: MW = 300 to 500, log P = 0 to 5, formal
charge = 0, and pH = Ref. In an attempt to mitigate any
obvious changes that could lead to numerical differences
arising from different protomers or tautomers, we eliminated
entries from the downloaded tranches if: (1) a given ZINC IDs
had multiple SMILES strings, (2) a SMILES string and its
associated MOL2 file contained a different number of
hydrogen atoms, or (3) uncommon elements were present
(e.g., silicon and metals).
Reassuringly, as shown in Figure 6, for nearly 100% of the

11M molecules evaluated, identical numerical results were

obtained across all 9 descriptors independent of whether a
MOL2 file (DOCK6_RDK_mol2) or SMILES file (Py-
thon_RDK_smi) was used as the input. This confirms the
reliability of the DOCK6/RDKit MOL2 to SMILES
conversions. Interestingly, despite our best efforts at pre- and
post-filtering ZINC15, a cursory examination using the
ZINC15 web browser showed that for several outliers, the
MOL2 and SMILES forms labeled as pH = Ref and charge = 0
had different tautomeric states. In some cases, there also
appeared to be differences in resonance state or number of
implicit bonds. In a practical sense, this suggests that users
should be careful to ensure that the correct tautomeric states
are represented as desired when computing descriptors using
either input format (MOL2 or SMILES).
D3N of Ligands in the Absence of a Protein. Single

Descriptor Design (D3N-Lateral Protocol) Dramatically
Shifts Distributions. Having validated that the DOCK6/
RDKit implementation is robust, we next assessed the ability of
our D3N algorithm to generate new ligands using the “simple-
build” infrastructure (absence of protein) which speeds up

Figure 6. Scatter plots for descriptors calculated using DOCK6/RDKit with SMILES generated from MOL2 files (DOCK6_RDK_mol2) vs
Python/RDKit with SMILES directly from ZINC (Python_RDK_smi). Heatmap colors correspond to the number of molecules (population)
across each descriptor range. TPSA values in angstroms squared.
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calculations. Figure 7 shows the distributions for three
descriptors (SynthA, TPSA, log P) derived from molecules
grown using a protocol in which only a single descriptor at a
time was employed for pruning at every layer of growth.
Growth here was based on setting the target D3N ranges for
each descriptor aggressively (Figure 7, target ranges in red
font) in that they were laterally shifted left or right (termed
D3N-lateral, red) relative to those obtained with the D3N-
loose (gray) protocol (little to no pruning control). The
accompanying values in parenthesis in Figure 7 specify how
many molecules were generated in each case. Results are
separated into those (a) employing the “standard” fragment
library supplied with DOCK6 (382 fragments, 10,844 torsions)
or (b) an alternative “focused” fragment library (389
fragments, 603 torsions) derived from molecules with negative
log P values.
Importantly, in each case, use of the D3N-lateral protocol

(red) yield distributions that are shifted toward their intended
target range (Figure 7 red labels) and they are more tightly
focused, which provides evidence that the D3N infrastructure
is working as intended. As expected, in all cases, on-the-fly
D3N pruning leads to fewer molecules being produced. For
SynthA (Figure 7a left), which employs a one-sided boundary,
the initially broad D3N-loose distribution (gray, 2 to 6)
becomes tightly focused with the D3N-lateral protocol (red, 1
to 4) and the resulting left-shifted peak (∼3) is close to the
intended target (upper range 2). For TPSA (Figure 7a
middle), which employs a two-sided boundary, good agree-
ment is also obtained. Here, D3N-lateral (red) results shift
right, which nicely spans the intended TPSA target range
(150−250), and the distribution peak (∼170) is near the
center (200). For log P however (Figure 7a right), although
the D3N-lateral (red) results are significantly more focused
and correctly shift left toward the target range (−10 to 0), the
ensemble contained very few molecules that extended below
−2.5 and the peak was not near the range center (−5).
The absence of designed molecules with negative log P was

somewhat surprising, which prompted us to more closely
examine molecules in the DrugC data set. De novo design
outcomes depend on many factors, including fragment
libraries, and many molecules in the DrugC data set with
negative log P contained functionality not present in our
standard DOCK6 fragment library, for example, phosphates,

tetracycline rings, or β-lactam fused rings. We hypothesized
that an alternative library, containing such fragments, would
lead to assembling of compounds enriched for negative log P.
Figure 7b plots D3N-lateral results using an alternative
“focused” library comprising 398 fragments and 603 allowable
torsions, which was derived from the disassembly of 494
molecules in the DrugC data set with negative log P values.
Reassuringly, the experiment showed a large increase in the
number of molecules with negative log P (Figure 7b vs 7a) for
both the D3N-lateral protocol (57.05 vs 20.21%, red) and the
D3N-loose control protocol (33.46 vs 5.30%, gray). The test
also provides context for any given computational protocol,
being able to achieve a desired descriptor “range” given the
sensitivity of de novo design to the composition of the
fragment libraries. They also establish that D3N protocols can
be used to shift descriptor distributions regardless of the
libraries employed. Notwithstanding the importance of
including specific fragment types that may lead to more
negative log P values (or other ranges for other properties), for
the remainder of the tests in this paper, the standard DOCK6
fragment library was employed.
Multi-Descriptor Design (D3N-Drugc Protocol) Focuses

Multiple Descriptors Simultaneously. In a second group of
“simple-build” experiments (absence of protein), we evaluated
the ability to drive multiple descriptors simultaneously
employing ranges derived from molecules in DrugCentral
(D3N-drugc protocol, Table 3). Here, although DOCK6 can
currently compute 13 RDKit descriptors, of which 7 are
available for on-the-fly de novo design, we opted not to drive
log S (to avoid multicollinearity, see Figure 4) or #PAINS
(initial tests showed that we rarely generate PAINS molecules
using the standard fragment library). Thus, the final group of 5
descriptors employed included QED, SynthA, TPSA, log P,
and #Stereo. Figure 8 compares distributions obtained using
the multi-descriptor D3N-drugc protocol (solid red, pruning at
every layer) with D3N-loose (gray, little to no pruning) and
the DrugC data set (dashed red). As before, accompanying
values in parenthesis specify how many molecules were
generated using each protocol.
As shown in Figure 8, compared to using the D3N-loose

(gray) protocol, the multi-descriptor D3N-drugc protocol
(solid red) yields molecules with distributions that are, in
general, more focused (tighter) and shift left or right in the

Figure 7. Normalized descriptor populations using the (a) standard DOCK6 fragment library or a (b) focused fragment library derived from
molecules with negative log P values. In each case, a single descriptor with laterally shifted target ranges (D3N-lateral, red) were used to drive de
novo growth in the absence of protein. Results obtained using the D3N-loose protocols (gray) are shown as a control. Legends indicate the specific
target ranges (labeled in red font) and the number of molecules obtained (in parenthesis). Readers should note these data were derived from four
independent experiments. The standard deviations employed for D3N-lateral protocols are the same as listed in Table 3 for D3N-drugc. TPSA
results in angstroms squared.
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direction of their intended target ranges (DrugCentral
distributions, dashed red). This demonstrates that descriptor-
based pruning can be used to drive multiple descriptors
simultaneously. For QED, TPSA, and to a lesser extent log P,
the peaks for D3N-drugc (solid red) land in-between those of
D3N-loose (gray) and the DrugCentral data set (dashed red).
QED shows a large shift from a single peak at around 0.25
(D3N-loose, gray, poor drug likeness) to a bimodal shape with

two peaks between 0.5 and 0.7 (D3N-drugc, solid red, higher
drug likeness). Although not explicitly driven, the D3N-drugc
distributions (solid red) for log S and #Aromatic rings also
show significant shifts toward DrugCentral (dashed red) likely
as a result of descriptors coupling arising from the strong anti-
correlation between log S and log P (−0.96, Figure 4) and
#Aromatic being a key component of the QED scoring
function (additional discussion below).

Figure 8. Outcomes from multi-descriptor de novo design using D3N-drugc (solid red) protocols driving QED, SynthA, TPSA, log P, and #Stereo
simultaneously compared to D3N-loose (gray) as a control. The distributions for molecules in the DrugCentral data set (dashed red) are shown for
comparison. Multi-descriptor target ranges are listed in Table 3. Values in parenthesis specify how many molecules were generated with each
protocol. TPSA values in angstroms squared.

Figure 9. De novo design outcomes in the absence of protein (simple-build protocol) using single descriptor D3N-drugc protocols to only drive
QED as a function of which growth layer the pruning algorithm takes effect (layer 1 red, layer 5 purple, layer 9 blue). Results from the multi-
descriptor D3N-drugc protocol are plotted for comparison (pink shaded areas). TPSA values in angstroms squared.
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Single Descriptor Design Can Influence Multiple Descrip-
tors. Of the nine descriptors in Figure 8, the distributions for
QED stand out as having the overall poorest agreement
between D3N-loose results and the DrugCentral data set
(Figure 8 gray vs dashed red). QED is a combination of
multiple descriptors including TPSA, log P, and #Aromatic in
conjunction with MW, #H-bond donors, #H-bond acceptors,
number of rotatable bonds, and number of structural alerts.27

In a third set of “simple-build” experiments (Figure 9), we
wanted the extent with which driving QED alone would show
a concomitant change in some of the underlying descriptors
that make up the total score. We also wanted to examine the
behavior of applying the D3N algorithm at different layers of
growth. We hypothesized that initiating D3N in early layers
would lead to a cumulative effect in terms of more closely
matching the intended target range. Figure 9 plots results from
driving QED alone (starting at layer 1, 5, or 9) versus driving
QED, SynthA, TPSA, log P, and #Stereo simultaneously
(starting at layer 1).
As shown in Figure 9a, driving QED alone starting at layer 1

(D3N-drugc 1 single, red) yields a QED distribution which
largely mimics the shape from the multi-descriptor distribution
(red vs pink shade). Also, the distributions for some of the
individual terms that make up QED (there are eight terms
total), including TPSA (Figure 9b), log P (Figure 9c), and
#Aromatic (Figure 9d), show a concomitant change, even
though they were not specifically pruned to do so, that also
approaches the multi-descriptor distributions (Figure 9b−d,

red vs pink). Importantly, as the D3N algorithm becomes
initiated earlier in the process, the distributions become
progressively focused in a relatively smooth manner (layer 9
blue to layer 5 purple to layer 1 red). Overall, the data in
Figure 9 provide additional evidence that the D3N algorithm is
well-behaved, demonstrating that changes in a given descriptor
distribution can be coupled to driving other descriptors and
showing that driving QED alone with a single-descriptor
protocol leads to outcomes approaching that of a multi-
descriptor protocol.
D3N of Ligands in Protein Binding Sites. Multi-

Descriptor Design in Proteins Yields Focused Distributions.
The three different D3N simple-build experiments, described
above, demonstrate that it is possible to bias chemical
searching to regions defined by the user in the absence of a
protein. This is to be expected, given that the pruning is
primarily driven by the descriptors themselves, although other
properties are also at play (i.e., newly formed bonds must be
allowable and other properties including MW, number of
rotatable bonds, and formal charge, among others in Table 2,
must be met). In this section, we evaluate the ability to
generate drug-like candidates in clinically relevant protein
targets taken from our SB2012 docking database.23,39 In
contrast to simple build, D3N growth in a protein will be
heavily influenced by the protein−ligand interaction energy.
Growth here was seeded in 57 individual binding site
structures (see Table 1 for individual pdb codes) comprising
8 protein families: acetylcholinesterase (5 systems), cyclo-

Figure 10. QED, SynthA, TPSA, and log P distributions obtained using D3N-drugc (red), D3N-loose (gray shade), and D3N-narrow (purple) in
57 protein binding sites starting from 15 fragments as anchors. D3N-drugc and D3N-loose target ranges listed in Table 3. D3N-narrow target
ranges shown in purple above each plot. Bottom panels compare distributions for the D3N-drugc rejected (dashed red) and accepted (solid red)
molecules. Distributions obtained by Kernel density estimation. TPSA values in angstroms squared.
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oxygenase (6 systems), EGFR (5 systems), HIV protease (12
systems), HIV reverse transcriptase (10 systems), IGF1R (4
systems), neuraminidase (10 systems), and streptavidin (5
systems). The protein environment simulations take signifi-
cantly longer than the previous simple-build experiments; thus,
only 15 fragments (see Computational Methods and Details)
were used to seed ligand growth in each of the 57 systems.
Figures 10 and 11 show descriptor distributions for QED,

SynthA, TPSA, log P (Figure 10 top), and #Stereo (Figure 11)
driving all five descriptors simultaneously using the same D3N-
drugc (red) or D3N-loose (gray) ranges employed in the
earlier simple-build experiments (Table 3). Results for a third
protocol, termed D3N-narrow (purple), are shown in Figure
10 to highlight the ability of the algorithm to generate narrow
distributions (target ranges shown above each plot). As
expected, in every case, the distributions from D3N-drugc
(red) and D3N-narrow (purple) are more focused relative to
D3N-loose (gray). The D3N-narrow results (purple) in
particular show extreme focusing (Figure 10 top, purple) and
yield peak locations in close agreement with the intended
target ranges listed above each plot. As shown in Figure 11, use
of a #Stereo upper target range of 2 with the D3N-drugc
protocol (0.93%, red) leads to very few molecules with more
than two stereocenters compared to the D3N-loose protocol
(14.1%, gray).
To further probe the algorithm, Figure 10 (bottom) plots

descriptor distributions using the D3N-drugc protocol based
on the rejected (dashed red) or accepted (solid red)
molecules, which confirms that the Metropolis-like criteria is
being obeyed with regards to enforcing soft-cutoff boundaries
(see Figure 3). For TPSA and log P, which have two-sided
boundaries, the rejected molecule profiles show clear bi-modal
distributions (dashed red) spanning opposite sides of the
accepted molecule profiles (solid red). Table 4 shows the
number of unique molecules generated via the three different
protocols. As expected, the construction trend in terms of
number of molecules follows D3N-loose (282,989) > D3N-
drugc (184,118) > D3N-narrow (11,903), and the trend for
rejection is in the opposite order with D3N-loose (724) <
D3N-drugc (565,823) < D3N-narrow (651,423). Taken
together, these results confirm the ability of the algorithm to
successfully create and prune molecules, based on user-defined
ranges for descriptors computed using the DOCK6/RDKit
interface, for de novo design performed in the context of a
protein binding site.

On-the-Fly Pruning Leads to Molecules Enriched for
Favorable Properties. As shown thus far, the DOCK6/RDKit
implementation allows users to prune unwanted molecules
during the de novo design process but it can also be used as a
post-processing filtering tool. To help gauge the added value
for using on-the-fly pruning, versus post-simulation filtering,
the ensembles created using D3N-loose and D3N-drugc
protocols were both processed by applying hard-cut filtering
to remove molecules at the boundaries arising from use of the
soft-cutoff algorithm. The two data sets were filtered using the
same five property cutoffs (D3N-drugc ranges in Table 3)
resulting in 39,159 molecules for D3N-loose (from 282,989
raw) and 44,419 molecules for D3N-drugc (from 184,118 raw)
as shown in Table 5. From an enrichment standpoint, the
filtered D3N-drugc protocol yielded an additional 5260
molecules, which is a 13.43% increase across all 57 systems.
Encouragingly, enrichments for all the protein families with the
D3N-drugc protocol generated more molecules ranging from
4.87 to 25.56% (Table 5, far right column). Figure 12 also
highlights that the filtered ensembles from D3N-drugc (red)
contain more molecules than the filtered ensembles from
D3N-loose (gray) in terms of favorable QED and SynthA
scores and within the target ranges specified for TPSA and log
P.
As an additional point of comparison for how most users

would likely employ de novo design in a practical setting, we
compared the results obtained using the “on-the-fly pruning”
approach, which yields smooth-tailed distributions (D3N-
drugc) versus a brute-force “build-all-then-filter” approach,
which yields hard-cut distributions (D3N-loose filtered).
Figure S2 visually highlights the differences between the two
approaches in terms of cheminformatic scores across the eight
protein families. From an energetic standpoint, Figure 13 plots
DOCK6 grid scores (non-bonded protein−ligand VDW + ES

Figure 11. Histogram populations for #Stereo (number of ligand stereocenters) using D3N-drugc (red) or D3N-loose (gray) simulation protocols
in 57 protein binding sites.

Table 4. Number of Unique Molecules Constructed Using
Different D3N Protocols in 57 Proteins Starting from 15
Different Fragments Each as Anchors for Growth over 9
Layers

D3N-loose D3N-drugc D3N-narrow

constructeda 282,989 184,118 11,903
D3N-rejected 724 565,823 651,423

aValues reflect the number of unique molecules created for each
anchor simulation with duplicates entries removed (see Computa-
tional Methods and Details).
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energy) along with the number of top-scoring molecules for
the range −50 kcal/mol and below (left of vertical black dotted
line). As expected, across all protein families (57 systems), the
aggressive pruning strategy in conjunction with Metropolis-like
smoothing (a desirable attribute of the D3N-drugc method)
yields significant enrichment compared to the brute-force
filtered approach (Figure 13, bottom right plot 23,308 red vs
1556 gray molecules). Across each individual protein family,
the enrichment was varied. For example, growth in
acetylcholinesterase yielded 2786 additional molecules (2999
red vs 213 gray) while growth in cyclooxygenase yielded a
smaller increase (655 red vs 49 gray). For HIVPR, the increase
was particularly large (10,700 red vs 427 gray).
The analysis above emphasizes the key differences likely to

occur as a result of using either modeling approach out of the
box. From an academic standpoint however, it is noteworthy
that there is also enrichment when the underlying smoothed-
tail D3N-drugc results are hard-cut filtered and only the
molecules with DOCK6 grid scores <−50 kcal/mol are
retained. Although, in practice, users would have no need to
filter out the D3N-drugc outcomes since by design the method
already biases the descriptor distributions; thus, the analysis
here is largely theoretical. Nevertheless, with both data sets
hard-filtered, as shown in Figure 14, use of D3N-drugc yields
enrichment in the number of top scoring molecules versus
D3N-loose (red vs gray bars) in 7 out of 8 cases. While the
numerical improvements (indicated above each red bar) are
not as large as the analysis shown in Figure 13, they do
establish a desirable outcome. For example, many research
groups (especially smaller academic labs) may only have
resources to synthesize and/or purchase a limited number of
molecules for biological testing for any given lead-discovery

project. Thus, any enrichment in the number of “quality”
molecules, in terms of their cheminformatics properties and
protein−ligand scores, is likely to be beneficial, especially for
those in the top-ranked range (DOCK6 scores −50 kcal/mol
and below). While additional testing is necessary to determine
if these are general trends, the results in this section provide
strong evidence that on-the-fly layer-by-layer pruning adds
quantitative value relative to a build-all and filter approach.
Apparent Influence of the Protein Environment on Drug

Likeness. Interestingly, a comparison between molecules
constructed using the D3N-loose protocol in protein binding
sites (D3N-loose_protein = yes) and those constructed in the
absence of protein (D3N-loose_protein = no) brings to light
an implicit bias toward the construction of compounds with
more favorable QED scores prior to use of any RDKit
descriptors. As shown in Figure 15, D3N-loose_protein = no
simulations generate compounds with QED scores closer to 0
(less drug like), which show a strong well-defined peak at
about 0.25 (gray shade). Conversely, the same D3N-loose
protocols, but executed in protein binding sites (D3N-
loose_protein = yes, green), yield a right-shifted QED
distribution with population peak at about 0.7 (more drug
like). Further, this D3N-loose_protein = yes profile for QED
shows remarkable agreement with the distribution generated
from approved drugs and active pharmaceutical agents in the
DrugC data set (Figure 15, red). This interesting result
suggests that the protein environment alone inherently biases
de novo growth toward the generation of more drug-like
molecules. It is likely that this observation is multi-faceted but
attributable in part to the physics-based scoring functions used
during growth for ranking and pruning. In the absence of
protein (simple-build protocol), the primary energy function

Table 5. Number of Molecules from Simulations Using D3N-Loose and D3N-Drugc Protocols

protein family (no.) D3N-loose rawa D3N-drugc rawa D3N-loose filteredb D3N-drugc filteredb

relative increase for
filtered (drugc vs

loose)c

acetylcholinesterase (5) 26,079 16,310 2954 3699 745 25.22
cyclooxygenase (6) 19,237 13,823 4004 4425 421 10.51
EGFR (5) 25,910 15,956 3571 3745 174 4.87
HIV protease (12) 71,480 45,069 7484 8637 1153 15.41
HIV reverse transcriptase (10) 44,793 30,161 8440 8985 545 6.46
IGF1R (4) 22,325 14,227 2903 3165 262 9.02
neuraminidase (10) 49,987 33,671 6111 7673 1562 25.56
streptavidin (5) 23,178 14,901 3692 4090 398 10.78
total (57) 282,989 184,118 39,159 44,419 5260 13.43

aRaw number of molecules obtained using each method. bFiltered number of molecules using D3N-drugc target ranges. cRelative increase in
filtered molecules (D3N-drugc vs D3N-loose) protocols (# molecules and %).

Figure 12. Added value for on-the-fly pruning versus hard-cut filtering. Panels compare D3N-loose (gray, 39,159 molecules) and D3N-drugc (red,
44,419 molecules) from ensembles filtered to remove molecules with descriptor values outside the D3N-drugc target ranges.
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employed is a simple non-bonded intramolecular energy of the
ligand (VDW repulsive term), which primarily enforces linear
conformations. In contrast, in protein environments, the
primary energy function is the standard DOCK grid score
comprising the pairwise sum of all non-bonded intermolecular

interactions between the protein and ligand (VDW plus ES
energies, see Computational Methods and Details).
An examination of the underlying terms that make up the

QED score reveals that the D3N-loose_protein = yes
simulations (green) yield smaller and more compact molecules
compared to D3N-loose_protein = no simulations (gray), as
highlighted by the shifts in MW and TPSA subplots (Figure 15
green vs gray). Here, D3N-loose_protein = no yields
molecules with MW that shift toward the user-defined upper
limit, in this case, 550 g/mol. In contrast, D3N-loose_protein
= yes yields a MW distribution peaking around ∼250. Since
the terms are not being explicitly driven, it is likely that the
trend toward smaller MW is a result of binding sites having
finite volume. The other descriptors in Figure 15, with the
exception of log P and #Alerts, would also be expected to be
correlated with molecular size, in particular, smaller numbers
of ligand #Rotatable bonds, smaller TPSA, and fewer aromatic
rings. As pointed out by a reviewer, our observations also likely
reflect the choice of proteins employed in the study, for which
all are drug targets with the exception of streptavidin. Also, for
binding pockets with different characters (i.e., larger or more
polar), it can be speculated that the ligand properties would

Figure 13. DOCK6 energy scores from molecules in the D3N-drugc ensemble (red line) versus molecules in the D3N-loose ensemble filtered
afterward by the D3N-drugc target ranges (gray area) by protein family. Energies in kcal/mol.

Figure 14. Number of top-scoring molecules from D3N-drugc filtered
and D3N-loose filtered protocols for the DOCK6 grid score range
−50 kcal/mol and below arranged by protein family. Values above
each red bar indicate increases arising from use of the D3N-drugc
filtered versus D3N-loose filtered protocol.
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change accordingly. In any event, the data in Figure 15 suggest
that simulations in proteins (green) of similar character as
studied here will have an inherent advantage in terms of
generating more “drug-like” molecules using metrics such as
QED with property distributions similar to compounds in the
DrugC data set (red). Use of additional biasing, via the new
DOCK6/RDKit interface, in some sense, makes an already
reasonable situation even better. In contrast, if using the
current DOCK6 protocols to design compounds in the
absence of protein, it would be recommended to apply
D3N-drugc ranges in Table 3, or other equivalent user-defined
ranges, as these boundary conditions help bias construction
toward drug-like space.
D3N Protocols Can Yield “Pinpoint” Descriptor Ranges.

The results in Figure 10 confirm that DOCK_D3N can be

used to grow molecules from scratch in a protein binding site
that fall within a user-defined set of ranges for descriptors. In
this section, we explore the ability of the algorithm to generate
molecules with enhanced protein interactions while simulta-
neously matching descriptor values of a given reference ligand
(termed D3N-pinpoint protocol). For these experiments, six
clinically relevant protein−ligand systems from our
SB201223,39 test set were selected: (1) SB203580 with MAP
kinase (pdb 1A9U),53 (2) SU2 with FGR1 kinase domain
(pdb 1AGW),54 (3) flurbiprofen with COX-1 (pdb 1EQH),55

(4) simvastatin with HMG-CoA reductase (pdb 1HW9),56 (5)
efavirenz with HIV reverse transcriptase (pdb 1IKW),57 and
(6) oseltamivir with neuraminidase (pdb 3CL0).58 Table 6
shows descriptor values for each reference ligand (computed
using DOCK6/RDKit) along with the D3N-pinpoint target

Figure 15. Comparison of QED scores, and the eight underlying descriptors that make up QED, derived from ensembles generated in the absence
of a proton (gray, D3N-loose_protein = no) and in protein binding sites (green, D3N-loose_protein = yes). For comparison, distributions from
molecules in the DrugC data set are also plotted (red, DrugC). MW in g/mol, TPSA in angstroms squared.

Table 6. Descriptor Values for Reference Ligands and Derived Target Ranges for D3N-Pinpoint Simulations

pdb code QED SynthA TPSA log P #Stereo

ref liganda D3N-pinpointb ref ligand D3N-pinpoint ref ligand D3N-pinpoint ref ligand D3N-pinpoint ref ligand D3N-pinpoint

1A9U 0.56 0.46 2.84 3.84 58.6 48 to 68 4.68 3.68 to 5.68 1 2
1AGW 0.69 0.59 2.34 3.34 52.7 42 to 62 2.46 1.46 to 3.46 0 1
1EQH 0.83 0.72 2.65 3.65 40.1 30 to 50 2.35 1.34 to 3.34 1 2
1HW9 0.51 0.41 4.89 5.88 106.9 96 to 116 2.77 1.77 to 3.77 7 8
1IKW 0.73 0.63 3.57 4.56 38.3 28 to 48 4.07 3.07 to 5.07 1 2
3CL0 0.64 0.53 4.82 5.81 106.1 96 to 116 −1.24 −2.20 to −0.20 3 4

aDescriptor values for reference ligands. bTarget ranges for D3N-pinpoint calculations (std dev: QED = 0.05, SynthA = 0.10, TPSA = 5.0, log P =
0.10). TPSA values in angstroms squared.
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ranges derived from each reference for the five D3N
descriptors being driven.
Preliminary tests showed that the very extreme pinpoint

ranges in Table 6 led to excessive pruning. To bolster sampling
under these conditions, we increased the values for three key
de novo design parameters: dn_num_random_picks (20 to 50),
dn_max_root_size (25 to 50), and dn_max_layer_size (25 to
50). We also increased the number of anchors used to seed
ligand growth (15 to 380). As noted in methods, the pinpoint
simulations also included FPS terms20,36 in the primary scoring
function, which helps bias growth toward per-residue VDW
and ES patterns made by the reference ligand. The overall
objective was to generate topologically different molecules but
with characteristics similar to the reference. For each system,
the ensembles resulting from different anchors were pooled
together, rank ordered, and the top 500 molecules were
retained for analysis.
Figure 16 plots D3N-pinpoint results with subplots ordered

based on the scores for the six reference ligands (ref ligand
rank in bold font, plots arranged from low to high). Readers
should note that the order of systems for the three descriptors
are different. For example, QED values for the six references go
from 0.51 (1HW9) to 0.83 (1EQH), TPSA goes from 38.3
(1IKW) to 106.9 (1HW9), and log P goes from −1.24 (3CL0)
to 4.68 (1A9U). Notably, the associated distributions from the
D3N-pinpoint simulations appear to be well-correlated in
terms of the reference ligand rank trends. For example, the
QED score for the reference ligand in 1HW9 (0.51) is the

lowest among the six systems examined and the resultant QED
profile from D3N-point simulations in 1HW9 is shifted farthest
left. Conversely, the reference ligand in 1EQH has the highest
QED score (0.83) and the D3N-pinpoint distribution is shifted
furthest right. The recognizable left to right progression, while
traveling down each row, for the three descriptors plotted,
provides evidence that the D3N algorithm can be used to tune
molecular outcomes about a desired descriptor value.
D3N Searching Yields Enhanced Interactions. An

examination of top-scoring molecules from the D3N-pinpoint
simulations shows that there is significant chemical searching
about each binding site, which can be visualized by plotting H-
bond patterns. Figure 17 shows specific H-bond interactions
(discussions employ pdb numbering) made by the six
reference ligands (top panels, green ligand, magenta labeled
residues) with those made by the 500 top-scoring molecules
constructed during each D3N simulation (bottom panels,
magenta and orange labeled residues). To emphasize trends,
molecules grown using D3N are hidden and only a subset of
binding site residues are shown. Reassuringly, in each case,
newly constructed molecules recapitulate key ES interactions
made by each reference (magenta-labeled residues) and
explore additional regions in the binding site (orange-labeled
residues). For example, D3N simulations in Map kinase
(Figure 17a) yield ligand ensembles with highly populated H-
bonds at residues Lys53 and Met109 (bottom panel, magenta
residues), which correspond to the two H-bonds made by the
reference ligand (top panel, magenta residues). Also, the

Figure 16. Descriptor distributions for the top 500 molecules, constructed using D3N-pinpoint protocols (Table 6), with subplots arranged in
increasing order based on the QED, TPSA, or log P values for the six reference ligands.
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algorithm explores additional H-bonding, which is observed at
positions Ala51, Leu104, Gly110, and Asp168 (bottom panel,
orange residues). Likewise, for the FGR1 kinase domain
(Figure 17b), the D3N ensembles yield significant H-bond
populations at Gly562 and Ala564 (bottom panel, magenta
residues), corresponding to those made by the reference ligand
(top panel, magenta residues), and there are additional
interaction patterns seen with Lys514, Asn568, and Tyr563
(bottom panel, orange residues). An examination of the

remaining four protein systems in Figure 17c−f shows similar
trends.
In terms of specific molecules, Figure 18 compares the pose

of each reference ligand (green) with the top scoring pose
from each D3N simulation (orange) along with their respective
MGEs (VDW + ES terms) and RDKit descriptor scores for
QED, SynthA, TPSA, and log P. As expected, the descriptor
values from the D3N-pinpoint simulations mirror their
respective references (Figure 18 tables, reference ligand versus
D3N top score). As an example, for 1A9U, both TPSA scores

Figure 17. H-bond patterns (dashed magenta lines) made by six reference ligands (top panels, ref ligand pose in green) and top-scoring ensembles
(N = 500 molecules) from D3N-pinpoint simulations (bottom panels, D3N molecules hidden for clarity) for (a) SB203580 with Map kinase
(1A9U), SU2 with FGR1 kinase domain (1AGW), flurbiprofen with COX-1 (1EQH), simvastatin HMG-CoA reductase (1HW9), efavirenz with
HIV-1RT (1IKW), and oseltamivir with neuraminidase (3CL0). H-bonds calculated using the Chimera59 program with default settings. Select
binding site residues shown in gray.
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(58.64, 72.28) and both log P scores (4.68, 5.53) are similar in
terms of numerical value. Also, for 3CL0, the D3N scores shift
accordingly to mimic the larger TPSA (106.10, 121.70) and
negative log P (−1.24, −0.18) values of the reference. The
molecules also show reasonable 3D overlap in the binding site,
which occurs in part because the MGS + FPS scoring function
helps keep growth from expanding too far outside of the
binding pocket. Descriptor comparisons for the four other
systems in Figure 18 follow similar trends. Of particular
interest, in four out of six cases (1A9U, 1AGW, 1IKW, 3CL0),
the top scoring D3N molecules in Figure 18 yield a more
favorable MGE score relative to its reference. This favorable
outcome suggests that the D3N pinpoint protocol will be
useful to explore a generation of new compounds, with
enhanced binding site interactions, while conforming to an
underling descriptor space defined by a known compound or
reference.

■ CONCLUSIONS
In conclusion, this work presents the development and testing
of a new DN approach for the program DOCK6 termed D3N,
which aims to bias the construction of new small organic
molecules to conform to a set of user-defined properties. The
new D3N method makes use of descriptors computed through
integration of DOCK6 with the open-source cheminformatics
package RDKit. At each stage (layer) of ligand growth, if values
for a given descriptor (or descriptors) fall outside of the target
range(s) defined by the user, the molecule is likely pruned
(Figure 1). Layer-by-layer growth requires fragment libraries,
which for the present work were derived from deconstruction
of 13M drug-like molecules (Figure 2). D3N pruning makes

use of a Metropolis-like scheme, permitting some molecules at
the descriptor boundaries to propagate, which yields smooth-
tailed distributions (Figure 3). Pruning is also executed in
coordination with existing routines, which control, for example,
molecular and conformational diversity, size, formal charge,
and interaction energy. The DOCK6/RDKit method can be
used to bias growth based on a single descriptor at a time, a
single descriptor that includes multiple underlying terms in the
function, or multiple descriptors simultaneously. The current
implementation allows for 13 RDKit descriptors to be
computed (see Introduction), of which 7 can be used for
D3N growth. The simulations discussed in this work employed
up to 5 descriptors simultaneously (QED, SynthA, TPSA, log
P, #Stereo). The new DOCK6/RDKit implementation yielded
results essentially identical to the standard Python/RDKit
distribution for 13 million molecules and 9 descriptors, thereby
confirming the integrity of the RDKit integration (Figure 5).
The validation process also confirmed the reliability of MOL2
to SMILES conversions (Figure 6). The DOCK6/RDKit
implementation can also be used to process large ligand
libraries (via the database filter/utilities class) to help prioritize
compounds for standard virtual screening, either before or after
docking has occurred. As an example, users can easily explore
different rank ordering options using DOCK6 MOL2 files
containing descriptor values and other scoring terms in
conjunction with the UCSF Chimera program (ViewDock
utility).
In comprehensive testing, five different D3N protocols were

evaluated, including those that specified loose ranges with little
to no pruning (D3N-loose), ranges based on approved small-
molecule drugs and active pharmaceutical agents (D3N-

Figure 18. Comparison between the top-scoring D3N-pinpoint pose (orange) and its respective reference ligand pose (green), along with MGE,
QED, SynthA, TPSA, and log P scores. Protein residues hidden for clarity. MGE in kcal/mol. TPSA in angstroms squared.
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drugc), ranges designed to laterally shift D3N-drugc
distributions left or right (D3N-lateral), ranges that were
narrower than the D3N-drugc targets (D3N-narrow), and
ranges designed to give tight pinpoint distributions (D3N-
pinpoint). Notably, in all cases, use of these different protocols,
relative to using D3N-loose as a control, led to descriptor
populations that shift left or right or are narrower, which
indicates that the DOCK6/RDKit D3N infrastructure is
working as intended. Particularly striking changes were
observed using the D3N-lateral protocol in the absence of
protein (Figures 7 red vs gray), the D3N-narrow protocol in 57
protein systems (Figure 10 purple vs gray), and the D3N-
pinpoint protocol in 6 protein binding sites (Figure 16, Table
6). Layer-by-layer growth experiments confirmed that the D3N
protocol can be initiated at any point during a DOCK_DN
simulation, and descriptor ranges approach their targets more
completely when the algorithm is applied in earlier layers
(Figure 9). Our studies also highlight that for functions such as
QED, comprising multiple descriptors, driving the primary
function alone will show concomitant changes in the
underlying descriptors themselves (Figure 9). Outcomes for
log P calculations were also observed to be influenced by the
underlying composition of the fragment libraries used during
ligand growth (Figure 7).
For the D3N-drugc simulations in 57 proteins, relative to the

D3N-loose control, a comparison of results hard-filtered to the
same cutoffs showed that there was added value in terms of an
increase in the number of designed molecules (13.4%) with
more favorable QED, SynthA, TPSA, and log P scores (Figure
12 red vs gray area, Table 5). By protein family, the increases
ranged from 4.87 to 25.56% (Table 5). Also, for the top-
scoring range, grid scores of −50 kcal/mol and below, the
D3N-drugc filtered protocol yielded more molecules than
D3N-loose filtered for 7 out of 8 protein families (Figure 14).
A particularly interesting observation was the apparent
influence on increased drug likeness (QED) when growth
was initiated in binding sites compared to the absence of
protein, before additional D3N biasing (Figure 15). An
examination of the underlying QED terms showed that
molecules constructed in binding sites were smaller, which is
likely due to differences in scoring function (internal energy
only versus non-bonded protein interactions) and the sites
being of finite volume. Simulations using the D3N-pinpoint
protocol, for 6 clinically relevant drug targets, showed that the
algorithm was effective at generating descriptor distributions,
which tracked the descriptor trends made by the cognate
reference ligand (Figure 16). An examination of H-bond
patterns, for the 500 top-scoring molecules in each of the 6
sites, showed high density with residues known to be engaged
by the reference and at other sites, which indicates robust
chemical searching and sampling (Figure 17). Also, in 4 out of
6 cases, the top-scoring D3N molecule yielded a DOCK
energy score more favorable than the reference while retaining
similar descriptor values (Figure 18).
In summary, the new D3N approach is an important

building block of our long-term strategy to develop an
extensive DN platform for which the whole is greater than
the sum of the individual parts. The comprehensive experi-
ments outlined in this paper indicate that the DOCK_D3N
algorithm will aggressively prune molecules when descriptors
fall outside of the target ranges, leading to descriptor
populations enriched for specific properties. Planned future
work includes implementation of additional RDKit descriptors

and adopting the interface for use with the DOCK6 genetic
algorithm recently reported by Prentis et al.26 As with all our
prior development efforts, the D3N method will be included in
a forthcoming public release of DOCK for use by the
community. We hypothesize that the GA interface may show
enhanced convergence because the limitation that molecules
must be correctly built to “spec” in only nine layers of de novo
growth will be lifted.

■ ASSOCIATED CONTENT
Data Availability Statement
The RDKit interface for DOCK6 described in this work will be
made available for use by the community to coincide with
publication of the manuscript or shortly thereafter. Until the
official release date, interested users with a valid DOCK6
license can obtain the software directly from the corresponding
author. DOCK6 is free for academics, including all source
code, and is available at https://dock.compbio.ucsf.edu/
DOCK_6/index.htm. RDKit is open-source and available at
https://www.rdkit.org. Compilation will require the
2019.09.01 release of RDKit (http://www.rdkit.org/), Boost
1.71.0 (http://www.boost.org/), Eigen 3.3.9 (http://www.
eigen.tuxfamily.org/), and Anaconda3 (http://www.anaconda.
com/). Protein simulations employed systems in the SB2012
protein data set available at http://ringo.ams.stonybrook.edu/
index.php/Rizzo_Lab_Downloads. Data analysis and plotting
was performed with pandas v1.1.4 (http://www.pandas.pydata.
org/) and matplotlib v3.6.0 (http://www.matplotlib.org/) in
conjunction with python v3.9 (http://www.python.org/). The
program UCSF Chimera (http://www.cgl.ucsf.edu/chimera)
was also used for data analysis and visualization.
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